Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.832
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3736, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744818

RESUMO

The E3 SUMO ligase PIAS2 is expressed at high levels in differentiated papillary thyroid carcinomas but at low levels in anaplastic thyroid carcinomas (ATC), an undifferentiated cancer with high mortality. We show here that depletion of the PIAS2 beta isoform with a transcribed double-stranded RNA-directed RNA interference (PIAS2b-dsRNAi) specifically inhibits growth of ATC cell lines and patient primary cultures in vitro and of orthotopic patient-derived xenografts (oPDX) in vivo. Critically, PIAS2b-dsRNAi does not affect growth of normal or non-anaplastic thyroid tumor cultures (differentiated carcinoma, benign lesions) or cell lines. PIAS2b-dsRNAi also has an anti-cancer effect on other anaplastic human cancers (pancreas, lung, and gastric). Mechanistically, PIAS2b is required for proper mitotic spindle and centrosome assembly, and it is a dosage-sensitive protein in ATC. PIAS2b depletion promotes mitotic catastrophe at prophase. High-throughput proteomics reveals the proteasome (PSMC5) and spindle cytoskeleton (TUBB3) to be direct targets of PIAS2b SUMOylation at mitotic initiation. These results identify PIAS2b-dsRNAi as a promising therapy for ATC and other aggressive anaplastic carcinomas.


Assuntos
Mitose , Proteínas Inibidoras de STAT Ativados , Humanos , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Animais , Linhagem Celular Tumoral , Camundongos , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Interferência de RNA , Fuso Acromático/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Complexo de Endopeptidases do Proteassoma/metabolismo , Sumoilação , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patologia , Feminino
2.
Int J Biol Macromol ; 266(Pt 2): 131371, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580013

RESUMO

Bacterial caseinolytic protease-chaperone complexes participate in the elimination of misfolded and aggregated protein substrates. The spirochete Leptospira interrogans possess a set of Clp-chaperones (ClpX, ClpA, and ClpC), which may associate functionally with two different isoforms of LinClpP (ClpP1 and ClpP2). The L. interrogans ClpC (LinClpC) belongs to class-I chaperone with two active ATPase domains separated by a middle domain. Using the size exclusion chromatography, ANS dye binding, and dynamic light scattering analysis, the LinClpC is suggested to undergo nucleotide-induced oligomerization. LinClpC associates with either pure LinClpP1 or LinClpP2 isoforms non-preferentially and with equal affinity. Regardless, pure LinClpP isoforms cannot constitute an active protease complex with LinClpC. Interestingly, the heterocomplex LinClpP1P2 in association with LinClpC forms a functional proteolytic machinery and degrade ß-casein or FITC-casein in an energy-independent manner. Adding either ATP or ATPγS further fosters the LinClpCP1P2 complex protease activity by nurturing the functional oligomerization of LinClpC. The antibiotic, acyldepsipeptides (ADEP1) display a higher activatory role on LinClpP1P2 protease activity than LinClpC. Altogether, this work illustrates an in-depth study of hetero-tetradecamer LinClpP1P2 association with its cognate ATPase and unveils a new insight into the structural reorganization of LinClpP1P2 in the presence of chaperone, LinClpC to gain protease activity.


Assuntos
Proteínas de Bactérias , Proteínas de Choque Térmico , Leptospira , Multimerização Proteica , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Endopeptidase Clp/metabolismo , Endopeptidase Clp/química , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Leptospira/metabolismo , Leptospira/enzimologia , Leptospira interrogans/enzimologia , Leptospira interrogans/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Ligação Proteica , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/química , Proteólise
3.
Sci Rep ; 14(1): 7666, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561384

RESUMO

Hepatocellular carcinoma (HCC) is a malignancy with poor prognosis. Abnormal expression of H3-H4 histone chaperones has been identified in many cancers and holds promise as a biomarker for diagnosis and prognosis. However, systemic analysis of H3-H4 histone chaperones in HCC is still lacking. Here, we investigated the expression of 19 known H3-H4 histone chaperones in HCC. Integrated analysis of multiple public databases indicated that these chaperones are highly expressed in HCC tumor tissues, which was further verified by immunohistochemistry (IHC) staining in offline samples. Additionally, survival analysis suggested that HCC patients with upregulated H3-H4 histone chaperones have poor prognosis. Using LASSO and Cox regression, we constructed a two-gene model (ASF1A, HJURP) that accurately predicts prognosis in ICGC-LIRI and GEO HCC data, which was further validated in HCC tissue microarrays with follow-up information. GSEA revealed that HCCs in the high-risk group were associated with enhanced cell cycle progression and DNA replication. Intriguingly, HCCs in the high-risk group exhibited increased immune infiltration and sensitivity to immune checkpoint therapy (ICT). In summary, H3-H4 histone chaperones play a critical role in HCC progression, and the two-gene (ASF1A, HJURP) risk model is effective for predicting survival outcomes and sensitivity to immunotherapy for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/genética , Histonas/metabolismo , Neoplasias Hepáticas/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Prognóstico
4.
J Cell Mol Med ; 28(9): e18209, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38682349

RESUMO

Ferroptosis is a new type of programmed cell death, which has been involved in the progression of tumours. However, the regulatory network of ferroptosis in pancreatic cancer is still largely unknown. Here, using datasets from GEO and TCGA, we screened HSPB1, related to the P450 monooxygenase signalling, a fuel of ferroptosis, to be a candidate gene for regulating pancreatic cancer cell ferroptosis. We found that HSPB1 was enriched in the exosomes derived from human pancreatic cancer cell lines SW1990 and Panc-1. Then, hypoxic SW1990 cells were incubated with exosomes alone or together with HSPB1 siRNA (si-HSPB1), and we observed that exosomes promoted cell proliferation and invasion and suppressed ferroptosis, which was reversed by si-HSPB1. Moreover, we found a potential binding affinity between HSPB1 and FUS, verified their protein interaction by using dual-colour fluorescence colocalization and co-IP assays, and demonstrated the promoting effect of FUS on oxidative stress and ferroptosis in hypoxic SW1990 cells. Subsequently, FUS was demonstrated to bind with and stabilize the mRNA of Nrf2, a famous anti-ferroptosis gene that negatively regulates the level of P450. Furthermore, overexpressing FUS and activating the Nrf2/HO-1 pathway (using NK-252) both reversed the inhibitory effect of si-HSPB1 on exosome functions. Finally, our in vivo studies showed that exosome administration promote tumour growth in nude mice of xenotransplantation, which was able to be eliminated by knockdown of HSPB1. In conclusion, exosomal HSPB1 interacts with the RNA binding protein FUS and decreases FUS-mediated stability of Nrf2 mRNA, thus suppressing hypoxia-induced ferroptosis in pancreatic cancer.


Assuntos
Exossomos , Ferroptose , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP27 , Proteínas de Choque Térmico , Fator 2 Relacionado a NF-E2 , Neoplasias Pancreáticas , RNA Mensageiro , Proteína FUS de Ligação a RNA , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Ferroptose/genética , Exossomos/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP27/genética , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/genética , Proliferação de Células , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Camundongos Nus , Estabilidade de RNA , Ligação Proteica
5.
Biophys Chem ; 309: 107235, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608617

RESUMO

The misfolding and aggregation of human islet amyloid polypeptide (hIAPP), also known as amylin, have been implicated in the pathogenesis of type 2 diabetes (T2D). Heat shock proteins, specifically, heat shock cognate 70 (Hsc70), are molecular chaperones that protect against hIAPP misfolding and inhibits its aggregation. Nevertheless, there is an incomplete understanding of the mechanistic interactions between Hsc70 domains and hIAPP, thus limiting their potential therapeutic role in diabetes. This study investigates the inhibitory capacities of different Hsc70 variants, aiming to identify the structural determinants that strike a balance between efficacy and cytotoxicity. Our experimental findings demonstrate that the ATPase activity of Hsc70 is not a pivotal factor for inhibiting hIAPP misfolding. We underscore the significance of the C-terminal substrate-binding domain of Hsc70 in inhibiting hIAPP aggregation, emphasizing that the removal of the lid subdomain diminishes the inhibitory effect of Hsc70. Additionally, we employed atomistic discrete molecular dynamics simulations to gain deeper insights into the interaction between Hsc70 variants and hIAPP. Integrating both experimental and computational findings, we propose a mechanism by which Hsc70's interaction with hIAPP monomers disrupts protein-protein connections, primarily by shielding the ß-sheet edges of the Hsc70-ß-sandwich. The distinctive conformational dynamics of the alpha helices of Hsc70 potentially enhance hIAPP binding by obstructing the exposed edges of the ß-sandwich, particularly at the ß5-ß8 region along the alpha helix interface. This, in turn, inhibits fibril growth, and similar results were observed following hIAPP dimerization. Overall, this study elucidates the structural intricacies of Hsc70 crucial for impeding hIAPP aggregation, improving our understanding of the potential anti-aggregative properties of molecular chaperones in diabetes treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Proteínas de Choque Térmico HSC70 , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Resposta ao Choque Térmico , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Chaperonas Moleculares/metabolismo , Simulação de Dinâmica Molecular , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo
6.
Biochem Biophys Res Commun ; 714: 149964, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38669753

RESUMO

Human DDX3X, an important member of the DEAD-box family RNA helicases, plays a crucial role in RNA metabolism and is involved in cancer development, viral infection, and neurodegenerative disease. Although there have been many studies on the physiological functions of human DDX3X, issues regarding its exact targets and mechanisms of action remain unclear. In this study, we systematically characterized the biochemical activities and substrate specificity of DDX3X. The results demonstrate that DDX3X is a bidirectional RNA helicase to unwind RNA duplex and RNA-DNA hybrid driven by ATP. DDX3X also has nucleic acid annealing activity, especially for DNA. More importantly, it can function as a typical nucleic acid chaperone which destabilizes highly structured DNA and RNA in an ATP-independent manner and promotes their annealing to form a more stable structure. Further truncation mutations confirmed that the highly disordered N-tail and C-tail are critical for the biochemical activities of DDX3X. They are functionally complementary, with the N-tail being crucial. These results will shed new light on our understanding of the molecular mechanism of DDX3X in RNA metabolism and DNA repair, and have potential significance for the development of antiviral/anticancer drugs targeting DDX3X.


Assuntos
Trifosfato de Adenosina , RNA Helicases DEAD-box , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Humanos , Trifosfato de Adenosina/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Especificidade por Substrato , RNA/metabolismo , RNA/química , RNA/genética , DNA/metabolismo , DNA/química
7.
IUCrJ ; 11(Pt 3): 287-298, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656309

RESUMO

This work focuses on molecules that are encoded by the major histocompatibility complex (MHC) and that bind self-, foreign- or tumor-derived peptides and display these at the cell surface for recognition by receptors on T lymphocytes (T cell receptors, TCR) and natural killer (NK) cells. The past few decades have accumulated a vast knowledge base of the structures of MHC molecules and the complexes of MHC/TCR with specificity for many different peptides. In recent years, the structures of MHC-I molecules complexed with chaperones that assist in peptide loading have been revealed by X-ray crystallography and cryogenic electron microscopy. These structures have been further studied using mutagenesis, molecular dynamics and NMR approaches. This review summarizes the current structures and dynamic principles that govern peptide exchange as these relate to the process of antigen presentation.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I , Chaperonas Moleculares , Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/química , Humanos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/imunologia , Peptídeos/imunologia , Peptídeos/química , Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/química , Cristalografia por Raios X
8.
Nucleic Acids Res ; 52(8): e41, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38554110

RESUMO

Human apurinic/apyrimidinic endonuclease 1 (APE1) plays crucial roles in repairing DNA damage and regulating RNA in the nucleus. However, direct visualization of nuclear APE1 in live cells remains challenging. Here, we report a chaperone@DNA probe for live-cell imaging of APE1 in the nucleus and nucleolus in real time. The probe is based on an assembly of phenylboronic acid modified avidin and biotin-labeled DNA containing an abasic site (named PB-ACP), which cleverly protects DNA from being nonspecifically destroyed while enabling targeted delivery of the probe to the nucleus. The PB-ACP construct specifically detects APE1 due to the high binding affinity of APE1 for both avidin and the abasic site in DNA. It is easy to prepare, biocompatible and allowing for long-term observation of APE1 activity. This molecular tool offers a powerful means to investigate the behavior of APE1 in the nuclei of various types of live cells, particularly for the development of improved cancer therapies targeting this protein.


Assuntos
Nucléolo Celular , Núcleo Celular , Sondas de DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Sondas de DNA/química , Células HeLa , Chaperonas Moleculares/metabolismo , Avidina/química , Avidina/metabolismo , DNA/metabolismo , Biotina/química
9.
Mol Cell ; 84(8): 1512-1526.e9, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38508184

RESUMO

J-domain proteins (JDPs) constitute a large family of molecular chaperones that bind a broad spectrum of substrates, targeting them to Hsp70, thus determining the specificity of and activating the entire chaperone functional cycle. The malfunction of JDPs is therefore inextricably linked to myriad human disorders. Here, we uncover a unique mechanism by which chaperones recognize misfolded clients, present in human class A JDPs. Through a newly identified ß-hairpin site, these chaperones detect changes in protein dynamics at the initial stages of misfolding, prior to exposure of hydrophobic regions or large structural rearrangements. The JDPs then sequester misfolding-prone proteins into large oligomeric assemblies, protecting them from aggregation. Through this mechanism, class A JDPs bind destabilized p53 mutants, preventing clearance of these oncoproteins by Hsp70-mediated degradation, thus promoting cancer progression. Removal of the ß-hairpin abrogates this protective activity while minimally affecting other chaperoning functions. This suggests the class A JDP ß-hairpin as a highly specific target for cancer therapeutics.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Dobramento de Proteína
10.
J Biol Chem ; 300(4): 107157, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479600

RESUMO

The aryl hydrocarbon receptor (AhR)-interacting protein (AIP) is a ubiquitously expressed, immunophilin-like protein best known for its role as a co-chaperone in the AhR-AIP-Hsp90 cytoplasmic complex. In addition to regulating AhR and the xenobiotic response, AIP has been linked to various aspects of cancer and immunity that will be the focus of this review article. Loss-of-function AIP mutations are associated with pituitary adenomas, suggesting that AIP acts as a tumor suppressor in the pituitary gland. However, the tumor suppressor mechanisms of AIP remain unclear, and AIP can exert oncogenic functions in other tissues. While global deletion of AIP in mice yields embryonically lethal cardiac malformations, heterozygote, and tissue-specific conditional AIP knockout mice have revealed various physiological roles of AIP. Emerging studies have established the regulatory roles of AIP in both innate and adaptive immunity. AIP interacts with and inhibits the nuclear translocation of the transcription factor IRF7 to inhibit type I interferon production. AIP also interacts with the CARMA1-BCL10-MALT1 complex in T cells to enhance IKK/NF-κB signaling and T cell activation. Taken together, AIP has diverse functions that vary considerably depending on the client protein, the tissue, and the species.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias , Receptores de Hidrocarboneto Arílico , Animais , Humanos , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Camundongos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/imunologia , Imunidade Inata
11.
Plant Physiol Biochem ; 208: 108471, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38503186

RESUMO

In flowering plants, the tapetum degeneration in post-meiotic anther occurs through developmental programmed cell death (dPCD), which is one of the most critical and sensitive steps for the proper development of male gametophytes and fertility. Yet the pathways of dPCD, its regulation, and its interaction with autophagy remain elusive. Here, we report that high-level expression of Arabidopsis autophagy-related gene BECLIN1 (BECN1 or AtATG6) in the tobacco tapetum prior to their dPCD resulted in developmental defects. BECN1 induces severe autophagy and multiple cytoplasm-to-vacuole pathways, which alters tapetal cell reactive oxygen species (ROS)-homeostasis that represses the tapetal dPCD. The transcriptome analysis reveals that BECN1- expression caused major changes in the pathway, resulting in altered cellular homeostasis in the tapetal cell. Moreover, BECN1-mediated autophagy reprograms the execution of tapetal PCD by altering the expression of the key developmental PCD marker genes: SCPL48, CEP1, DMP4, BFN1, MC9, EXI1, and Bcl-2 member BAG5, and BAG6. This study demonstrates that BECN1-mediated autophagy is inhibitory to the dPCD of the tapetum, but the severity of autophagy leads to autophagic death in the later stages. The delayed and altered mode of tapetal degeneration resulted in male sterility.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Apoptose/genética , Homeostase , Autofagia/genética , Regulação da Expressão Gênica de Plantas , Flores/metabolismo , Proteínas Nucleares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
12.
EMBO Rep ; 25(4): 2045-2070, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454159

RESUMO

Teratozoospermia is a significant cause of male infertility, but the pathogenic mechanism of acephalic spermatozoa syndrome (ASS), one of the most severe teratozoospermia, remains elusive. We previously reported Spermatogenesis Associated 6 (SPATA6) as the component of the sperm head-tail coupling apparatus (HTCA) required for normal assembly of the sperm head-tail conjunction, but the underlying molecular mechanism has not been explored. Here, we find that the co-chaperone protein BAG5, expressed in step 9-16 spermatids, is essential for sperm HTCA assembly. BAG5-deficient male mice show abnormal assembly of HTCA, leading to ASS and male infertility, phenocopying SPATA6-deficient mice. In vivo and in vitro experiments demonstrate that SPATA6, cargo transport-related myosin proteins (MYO5A and MYL6) and dynein proteins (DYNLT1, DCTN1, and DNAL1) are misfolded upon BAG5 depletion. Mechanistically, we find that BAG5 forms a complex with HSPA8 and promotes the folding of SPATA6 by enhancing HSPA8's affinity for substrate proteins. Collectively, our findings reveal a novel protein-regulated network in sperm formation in which BAG5 governs the assembly of the HTCA by activating the protein-folding function of HSPA8.


Assuntos
Proteínas do Citoesqueleto , Infertilidade Masculina , Teratozoospermia , Tiazóis , Humanos , Masculino , Animais , Camundongos , Teratozoospermia/metabolismo , Teratozoospermia/patologia , Sêmen/metabolismo , Espermatozoides/metabolismo , Cabeça do Espermatozoide/fisiologia , Espermatogênese/genética , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Dineínas/metabolismo , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
13.
Mol Cell Biol ; 44(2): 72-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482865

RESUMO

ANP32e, a chaperone of H2A.Z, is receiving increasing attention because of its association with cancer growth and progression. An unanswered question is whether ANP32e regulates H2A.Z dynamics during the cell cycle; this could have clear implications for the proliferation of cancer cells. We confirmed that ANP32e regulates the growth of human U2OS cancer cells and preferentially interacts with H2A.Z during the G1 phase of the cell cycle. Unexpectedly, ANP32e does not mediate the removal of H2A.Z from chromatin, is not a stable component of the p400 remodeling complex and is not strongly associated with chromatin. Instead, most ANP32e is in the cytoplasm. Here, ANP32e preferentially interacts with H2A.Z in the G1 phase in response to an increase in H2A.Z protein abundance and regulates its protein stability. This G1-specific interaction was also observed in the nucleoplasm but was unrelated to any change in H2A.Z abundance. These results challenge the idea that ANP32e regulates the abundance of H2A.Z in chromatin as part of a chromatin remodeling complex. We propose that ANP32e is a molecular chaperone that maintains the soluble pool of H2A.Z by regulating its protein stability and acting as a buffer in response to cell cycle-dependent changes in H2A.Z abundance.


Assuntos
Histonas , Nucleossomos , Humanos , Histonas/metabolismo , Cromatina , Núcleo Celular/metabolismo , Chaperonas Moleculares/metabolismo , Ciclo Celular , Estabilidade Proteica
14.
Cell Stress Chaperones ; 29(2): 338-348, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521349

RESUMO

The 70 kDa heat shock protein (Hsp70) chaperones control protein homeostasis in all ATP-containing cellular compartments. J-domain proteins (JDPs) coevolved with Hsp70s to trigger ATP hydrolysis and catalytically upload various substrate polypeptides in need to be structurally modified by the chaperone. Here, we measured the protein disaggregation and refolding activities of the main yeast cytosolic Hsp70, Ssa1, in the presence of its most abundant JDPs, Sis1 and Ydj1, and two swap mutants, in which the J-domains have been interchanged. The observed differences by which the four constructs differently cooperate with Ssa1 and cooperate with each other, as well as their observed intrinsic ability to bind misfolded substrates and trigger Ssa1's ATPase, indicate the presence of yet uncharacterized intramolecular dynamic interactions between the J-domains and the remaining C-terminal segments of these proteins. Taken together, the data suggest an autoregulatory role to these intramolecular interactions within both type A and B JDPs, which might have evolved to reduce energy-costly ATPase cycles by the Ssa1-4 chaperones that are the most abundant Hsp70s in the yeast cytosol.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ligação Proteica , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo
15.
Cell Stress Chaperones ; 29(2): 285-299, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428516

RESUMO

Females of the extremophile crustacean, Artemia franciscana, either release motile nauplii via the ovoviviparous pathway or encysted embryos (cysts) via the oviparous pathway. Cysts contain an abundant amount of the ATP-independent small heat shock protein that contributes to stress tolerance and embryo development, however, little is known of the role of ATP-dependent molecular chaperone, heat shock protein 90 (Hsp90) in the two processes. In this study, a hsp90 was cloned from A. franciscana. Characteristic domains of ArHsp90 were simulated from the deduced amino acid sequence, and 3D structures of ArHsp90 and Hsp90s of organisms from different groups were aligned. RNA interference was then employed to characterize ArHsp90 in A. franciscana nauplii and cysts. The partial knockdown of ArHsp90 slowed the development of nauplius-destined, but not cyst-destined embryos. ArHsp90 knockdown also reduced the survival and stress tolerance of nauplii newly released from A. franciscana females. Although the reduction of ArHsp90 had no effect on the development of diapause-destined embryos, the resulting cysts displayed reduced tolerance to desiccation and low temperature, two stresses normally encountered by A. franciscana in its natural environment. The results reveal that Hsp90 contributes to the development, growth, and stress tolerance of A. franciscana, an organism of practical importance as a feed source in aquaculture.


Assuntos
Artemia , Cistos , Animais , Feminino , Artemia/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Desenvolvimento Embrionário , Embrião não Mamífero/metabolismo , Cistos/metabolismo , Trifosfato de Adenosina/metabolismo
16.
Proc Natl Acad Sci U S A ; 121(12): e2309326121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483986

RESUMO

Hsp90s are ATP-dependent chaperones that collaborate with co-chaperones and Hsp70s to remodel client proteins. Grp94 is the ER Hsp90 homolog essential for folding multiple secretory and membrane proteins. Grp94 interacts with the ER Hsp70, BiP, although the collaboration of the ER chaperones in protein remodeling is not well understood. Grp94 undergoes large-scale conformational changes that are coupled to chaperone activity. Within Grp94, a region called the pre-N domain suppresses ATP hydrolysis and conformational transitions to the active chaperone conformation. In this work, we combined in vivo and in vitro functional assays and structural studies to characterize the chaperone mechanism of Grp94. We show that Grp94 directly collaborates with the BiP chaperone system to fold clients. Grp94's pre-N domain is not necessary for Grp94-client interactions. The folding of some Grp94 clients does not require direct interactions between Grp94 and BiP in vivo, suggesting that the canonical collaboration may not be a general chaperone mechanism for Grp94. The BiP co-chaperone DnaJB11 promotes the interaction between Grp94 and BiP, relieving the pre-N domain suppression of Grp94's ATP hydrolysis activity. In structural studies, we find that ATP binding by Grp94 alters the ATP lid conformation, while BiP binding stabilizes a partially closed Grp94 intermediate. Together, BiP and ATP push Grp94 into the active closed conformation for client folding. We also find that nucleotide binding reduces Grp94's affinity for clients, which is important for productive client folding. Alteration of client affinity by nucleotide binding may be a conserved chaperone mechanism for a subset of ER chaperones.


Assuntos
Proteínas de Choque Térmico HSP70 , Dobramento de Proteína , Humanos , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Nucleotídeos , Trifosfato de Adenosina/metabolismo
17.
Endocr Relat Cancer ; 31(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457246

RESUMO

The clinical diagnosis and treatment of pituitary neuroendocrine tumors (PitNETs) that invade the cavernous sinus are fraught with difficulties and challenges. Exploring the biological characteristics involved in the occurrence and development of PitNETs that invade the cavernous sinus will help to elucidate the mechanism of cavernous sinus invasion. There are differences between intrasellar tumors (IST) and cavernous sinus-invasion tumors (CST) in ultramicrostructure, tumor microenvironment (TME), gene expression, and signaling pathways. The microvascular endothelial cell is increased in CST. The VEGFR signaling pathway, VEGF signaling pathway, and chemokine signaling pathway are activated in CST. HSPB1 is upregulated in CST and promotes cell proliferation, cell viability, and migration. HSPB1 promotes the release of VEGF from GT1-1 cells and activates the VEGF signaling pathway in bEnd.3 cells. HSPB1 promotes the migration of bEnd.3 cells to GT1-1 cells and promotes the formation of blood vessels of bEnd.3 cells. bEnd.3 cells can release CCL3 and CCL4 and promote the vitality, proliferation, and migration of GT1-1 cells. HSPB1 promotes the formation of blood vessels of bEnd.3 cells and ultimately leads to tumor growth in vivo. HSPB1 acts as a key gene for invasion of the cavernous sinus in PitNETs, remodeling TME by promoting the formation of blood vessels of brain microvascular endothelial cells. The synergistic effect of tumor cells and microvascular endothelial cells promotes tumor progression. The mechanism by which HSPB1 promotes tumor invasion by inducing angiogenesis in PitNETs may be a new target for the treatment of PitNETs invading the cavernous sinus.


Assuntos
Proteínas de Choque Térmico , Chaperonas Moleculares , Invasividade Neoplásica , Neovascularização Patológica , Neoplasias Hipofisárias , Humanos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Animais , Chaperonas Moleculares/metabolismo , Camundongos , Proteínas de Choque Térmico/metabolismo , Neoplasias Hipofisárias/patologia , Neoplasias Hipofisárias/metabolismo , Masculino , Feminino , Camundongos Nus , Linhagem Celular Tumoral , Proliferação de Células , Movimento Celular , Angiogênese
18.
Biomed Pharmacother ; 173: 116338, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417290

RESUMO

Prostate cancer (PCa) is witnessing a concerning rise in incidence annually, with the androgen receptor (AR) emerging as a pivotal contributor to its growth and progression. Mounting evidence underscores the AR's ability to recruit cofactors, influencing downstream gene transcription and thereby fueling the proliferation and metastasis of PCa cells. Although, clinical strategies involving AR antagonists provide some relief, managing castration resistant prostate cancer (CRPC) remains a formidable challenge. Thus, the need of the hour lies in unearthing new drugs or therapeutic targets to effectively combat PCa. This review encapsulates the pivotal roles played by coactivators and corepressors of AR, notably androgen receptor-associated protein (ARA) and steroid receptor Coactivators (SRC) in PCa. Our data unveils how these cofactors intricately modulate histone modifications, cell cycling, SUMOylation, and apoptosis through their interactions with AR. Among the array of cofactors scrutinised, such as ARA70ß, ARA24, ARA160, ARA55, ARA54, PIAS1, PIAS3, SRC1, SRC2, SRC3, PCAF, p300/CBP, MED1, and CARM1, several exhibit upregulation in PCa. Conversely, other cofactors like ARA70α, PIASy, and NCoR/SMRT demonstrate downregulation. This duality underscores the complexity of AR cofactor dynamics in PCa. Based on our findings, we propose that manipulating cofactor regulation to modulate AR function holds promise as a novel therapeutic avenue against advanced PCa. This paradigm shift offers renewed hope in the quest for effective treatments in the face of CRPC's formidable challenges.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias da Próstata/genética , Linhagem Celular Tumoral , Chaperonas Moleculares/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Inibidoras de STAT Ativados/uso terapêutico
19.
BMB Rep ; 57(3): 155-160, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38303563

RESUMO

Lung cancer carries one of the highest mortality rates among all cancers. It is often diagnosed at more advanced stages with limited treatment options compared to other malignancies. This study focuses on calnexin as a potential biomarker for diagnosis and treatment of lung cancer. Calnexin, a molecular chaperone integral to N-linked glycoprotein synthesis, has shown some associations with cancer. However, targeted therapeutic or diagnostic methods using calnexin have been proposed. Through 1D-LCMSMS, we identified calnexin as a biomarker for lung cancer and substantiated its expression in human lung cancer cell membranes using Western blotting, flow cytometry, and immunocytochemistry. Anti-calnexin antibodies exhibited complement-dependent cytotoxicity to lung cancer cell lines, resulting in a notable reduction in tumor growth in a subcutaneous xenograft model. Additionally, we verified the feasibility of labeling tumors through in vivo imaging using antibodies against calnexin. Furthermore, exosomal detection of calnexin suggested the potential utility of liquid biopsy for diagnostic purposes. In conclusion, this study establishes calnexin as a promising target for antibody-based lung cancer diagnosis and therapy, unlocking novel avenues for early detection and treatment. [BMB Reports 2024; 57(3): 155-160].


Assuntos
Neoplasias Pulmonares , Humanos , Calnexina/metabolismo , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Ligação ao Cálcio/metabolismo , Chaperonas Moleculares/metabolismo , Biomarcadores
20.
Cell Stress Chaperones ; 29(1): 1-9, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309209

RESUMO

The activity of the Hsp70 molecular chaperone is regulated by a suite of helper co-chaperones that include J-proteins. Studies on J-proteins have historically focused on their expression, localization, and activation of Hsp70. There is growing evidence that the post-translational modifications (PTMs) of chaperones (the chaperone code) fine-tune chaperone function. This mini-review summarizes the current understanding of the role and regulation of PTMs on the major J-proteins Ydj1 and DNAJA1. Understanding these PTMs may provide novel therapeutic avenues for targeting chaperone activity in cancer and neurodegenerative diseases.


Assuntos
Proteínas de Choque Térmico HSP40 , Chaperonas Moleculares , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Dobramento de Proteína , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA